Smooth and non-smooth traveling waves in a nonlinearly dispersive equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of Solitary Waves for a Nonlinearly Dispersive Equation

Solitary-wave solutions of a nonlinearly dispersive equation are considered. It is found that solitary waves are peaked or smooth waves, depending on the wave speed. The stability of the smooth solitary waves also depends on the wave speed. Orbital stability is proved for some wave speeds, while instability is proved for others.

متن کامل

Instability of Solitary Waves for a Nonlinearly Dispersive Equation

Solitary-wave solutions of a nonlinearly dispersive evolution equation are considered. It is shown that these waves are unstable in a certain parameter range.

متن کامل

On the wave length of smooth periodic traveling waves of the Camassa–Holm equation☆

This paper is concerned with the wave length λ of smooth periodic traveling wave solutions of the Camassa-Holm equation. The set of these solutions can be parametrized using the wave height a (or "peak-to-peak amplitude"). Our main result establishes monotonicity properties of the map [Formula: see text], i.e., the wave length as a function of the wave height. We obtain the explicit bifurcation...

متن کامل

On the Cauchy Problem for a Nonlinearly Dispersive Wave Equation

We establish the local well-posedness for a new nonlinearly dispersive wave equation and we show that the equation has solutions that exist for indefinite times as well as solutions which blowup in finite time. Furthermore, we derive an explosion criterion for the equation and we give a sharp estimate from below for the existence time of solutions with smooth initial data.

متن کامل

Smooth biproximity spaces and P-smooth quasi-proximity spaces

The notion of smooth biproximity space  where $delta_1,delta_2$ are gradation proximities defined by Ghanim et al. [10]. In this paper, we show every smooth biproximity space $(X,delta_1,delta_2)$ induces a supra smooth proximity space $delta_{12}$ finer than $delta_1$ and $delta_2$. We study the relationship between $(X,delta_{12})$ and the $FP^*$-separation axioms which had been introduced by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematical Modelling

سال: 2000

ISSN: 0307-904X

DOI: 10.1016/s0307-904x(00)00031-7